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Abstract. Path-integral methods can be used to derive a ‘path-decomposition expansion’ for the
temperature Green function of a magnetized free-electron gas confined by a hard wall. With the
help of this expansion the asymptotic behaviour of the profiles for the excess particle density and
the electric current density far from the edge is determined for arbitrary values of the magnetic
field strength. The asymptotics are found to depend sensitively on the degree of degeneracy. For
a non-degenerate electron gas the asymptotic profiles are essentially Gaussian (albeit modulated
by a Bessel function), on a length scale that is a function of the magnetic field strength and
the temperature. For a completely degenerate electron gas the asymptotic behaviour is again
proportional to a Gaussian, with a scale that is the magnetic length in this case. The prefactors are
polynomial and logarithmic functions of the distance from the wall, which depend on the number
of filled Landau levelsn. As a consequence, the Gaussian asymptotic decay sets in at distances
that are large compared with the magnetic length multiplied by

√
n.

1. Introduction

In a magnetized charged-particle system edge effects are of paramount importance. An
illustration of this fact is furnished by the phenomenon of Landau diamagnetism [1], which is
due to electric currents flowing near the boundaries of the sample. As a further example one
may mention quantum Hall systems for which the relevance of edge effects has been amply
shown.

The analysis of the influence of the boundary on the properties of a quantum many-body
system is a difficult mathematical problem. Even if the bulk properties of the unconfined
system are understood, the presence of the edge leads to a boundary-value problem that is
often difficult to solve analytically. Leaving out the interparticle interaction simplifies this
problem quite a lot, although even in that case the analysis remains complicated. A physical
system that is particularly relevant in this context is the non-interacting electron gas in a uniform
magnetic field in the presence of a confining hard wall. In fact, this is the system in which
Landau diamagnetism, with currents flowing near the edge, can be studied in its purest form.

Several methods have been devised to analyse edge effects in the confined magnetized
free-electron gas. At zero temperature one may try to solve the eigenvalue problem in terms
of distorted Landau levels and determine the edge currents by summing the contributions of
the lowest-lying eigenfunctions. Even for a simple flat geometry this leads to a rather involved
mathematical analysis in terms of parabolic cylinder functions [2,3]. Recently, we studied the
profiles of the particle density and the electric current density along these lines [4].
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An alternative approach starts by focusing on the high-temperature regime, where
Maxwell–Boltzmann statistics applies. In that case a convenient tool is furnished by the
one-particle temperature-dependent Green function. As shown by Balian and Bloch [5], the
Green function for the confined system can be related to that of the corresponding system
without boundaries by making a systematic expansion that accounts for an increasing number
of reflections of the particles against the confining wall. The ensuing multiple-reflection
expansion was used in recent years [6, 7] to determine the profiles of the particle density and
the (electric) current density for small values of the magnetic field. These small-field profiles
had been found before from perturbation theory [8,9]. It turns out to be difficult to generalize
these results for the profiles to arbitrary field strength and to relate them to those obtained by
means of the eigenvalue method.

Some time ago Auerbach and Kivelson [10] invented a path-integral method to analyse
boundary effects in Green functions. By suitably decomposing the relevant paths near the edge
they derived a so-called ‘path-decomposition expansion’ (PDX) for the one-particle Green
function. The aim of this paper is to see whether the use of the PDX may shed light on the
difficulties mentioned above and whether it may lead to new results on the profiles of physical
quantities for arbitrary field strength, both for the high-temperature region and in the regime
of high degeneracy.

The plan of the paper is as follows. We start by a review of the PDX and its derivation from
the Feynman–Kac path integral. Particular attention will be given to the convergence of the
PDX series. It will be shown that a suitable resummation can greatly enhance that convergence.
The connection with the multiple-reflection expansion will be established. Subsequently, the
extension of the method so as to include magnetic fields will be discussed by starting from the
Feynman–Kac–It̂o representation.

For the specific case of a non-interacting charged-particle system in a uniform magnetic
field, confined by a hard wall parallel to the field, the general form of the terms in the PDX
series can be established in detail. That result will be used to determine the first few terms
of the asymptotic expansion for the profiles of the particle density and the current density.
This asymptotic expansion is valid far from the edge and in the high-temperature regime. In
contrast to earlier work we will not need to restrict ourselves to small field strengths, as we
shall establish the full field dependence of the profiles. As it turns out, the precise knowledge
of the asymptotic profiles for high temperatures and arbitrary fields is essential in determining
how the profiles for the degenerate case depend on the filling of the Landau levels.

2. Path-decomposition expansion

Consider a particle in an external potentialV (r), i.e. with the Hamiltonian

H = p2

2
+ V (r) (1)

where we have chosen units in such a way that the particle mass drops out. The equilibrium
quantum statistical properties of a set of particles moving in the potentialV is governed by
the temperature Green functionGβ(r

′, r), with β the inverse temperature. Its path-integral
representation is given by the Feynman–Kac formula

Gβ(r
′, r) = 〈r′|e−βH |r〉 =

∫
dµr

′,β
r,0 (ω) exp

[
−
∫ β

0
dτ V (ω(τ))

]
(2)

whereω(τ) describes the path and dµr
′,β
r,0 is the conditional Wiener measure [11].

If a hard wall confines the particles to a region of space, the potential can be written
asV (r) = V0(r) + Vw(r), whereVw is a steep wall potential andV0 is a smooth external
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potential. Exact evaluation of (2) for the confined problem is, in general, not possible, even
if the corresponding unconfined problem can be solved completely. In this section we will
explore the use of the PDX, first introduced by Auerbach and Kivelson [10], to determine the
Green function of the confined problem.

To simplify matters, consider the one-dimensional case, with a hard wall atx = 0, i.e.
Vw(x) = ∞ for x < 0 andVw(x) = 0 for x > 0. As a first step, we split the Green function
into two parts

Gβ(x
′, x) = G0

β(x
′, x) +Gc

β(x
′, x). (3)

HereG0
β is the Green function for the problem without a wall. In order to calculate it, one needs

to specify the potentialV0(x) for x < 0 as well. We will take the latter to be the analytical
continuation of the potential forx > 0. We shall assume that the resultingV0(x) is such that
G0
β can be evaluated in closed form.

The second term of (3) is the difficult part. It is a correction that contains contributions
from all paths crossing the boundary at least once, with an additional minus sign so as to
compensate the corresponding contributions inG0

β . In order to calculateGc
β , one discretizes

the path integral in the usual way by introducingn evenly spaced grid points atτm = mεn,
with εn = β/(n + 1). Subsequently, one decomposes the paths at the boundary [10]. Here
‘decomposing’ means that the paths are split into two at the pointτ , where they cross the
boundary for the last time. Choosing this ‘point of no return’ betweenτm andτm+1, one writes
the path integral forGc

β as

Gc
β(x
′, x) = − lim

n→∞

n∑
m=1

∫ 0

−∞
dxm

∫ ∞
0

dxm+1

×Gβ−(m+1)εn (x
′, xm+1)G

0
εn
(xm+1, xm)G

0
mεn
(xm, x) (4)

for x andx ′ both positive.
In the small interval betweenτm andτm+1 the potentialV0 can be ignored, since the error

will vanish in the continuum limit. Hence, in this interval we may use the ‘free’ propagator
G0
f,β(x

′, x) = (2πβ)−1/2 exp[−(x ′ − x)2/2β], where we have put ¯h = 1. The free propagator
satisfies the identity

G0
f,β(|x ′|,−|x|) = sgn(x ′) lim

x ′′↓0

∫ β

0
dτ

∂

∂x ′′
G0
f,β−τ (x

′, x ′′)G0
f,τ (0, x). (5)

This identity, which is a generalization of that used in [10], follows directly by differentiation
of the relation∫ 1

0
dτ [τ(1− τ)]−1/2e−a

2/τ−b2/(1−τ) = π Erfc(a + b) (a > 0, b > 0) (6)

with respect tob. Using (5) withx < 0 andx ′ > 0 in (4), we get

Gc
β(x
′, x) = − lim

n→∞ lim
x ′′↓0

n∑
m=1

∫ εn

0
dτ
∫ 0

−∞
dxm

× ∂

∂x ′′
Gβ−τ−mεn(x

′, x ′′)G0
τ (0, xm)G

0
mεn
(xm, x). (7)

The integral overxm can be extended to the interval [−∞,∞], if a compensating factor12 is
inserted. In fact, only small values ofxm contribute anyway, at least in the continuum limit,
owing to the presence of the secondG0 function. For these small values ofxm the integrand
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is approximately invariant under a change of sign ofxm. Subsequently, we may join the two
G0 into one, so that we get a closed integral relation

Gc
β(x
′, x) = − lim

x ′′↓0
1

2

∫ β

0
dτ

∂

∂x ′′
Gβ−τ (x ′, x ′′)G0

τ (0, x) (8)

for positivex andx ′. This integral relation is the PDX formula derived in [10]. Since the
right-hand side contains the original Green functionG, we can iterate this integral equation
by inserting (3). In this way we arrive at the PDX series

Gβ(x
′, x) = G0

β(x
′, x)− lim

x ′′↓0
1

2

∫ β

0
dτ

∂

∂x ′′
G0
β−τ (x

′, x ′′)G0
τ (0, x)

+ lim
x ′′↓0

(
1

2

)2 ∫ β

0
dτ

∂

∂x ′′
lim
x ′′′↓0

∫ β−τ

0
dτ ′

× ∂

∂x ′′′
G0
β−τ−τ ′(x

′, x ′′′)G0
τ ′(0, x

′′)G0
τ (0, x)− · · · . (9)

To study the convergence of the PDX series we look at the special case of a vanishing
external potentialV0. The Green function for a free particle in the presence of a hard wall can
be calculated using a reflection principle. It reads

Gf,β(x
′, x) = G0

f,β(x
′, x)−G0

f,β(−x ′, x) (10)

for x andx ′ positive. Since the first term isG0
β , the second term must be the correctionGc

β .
To check the validity of (9) for the present case, we repeatedly employ (5), with the result

Gf,β(x
′, x) = G0

f,β(x
′, x)−

( ∞∑
n=1

2−n
)
G0
f,β(−x ′, x). (11)

Indeed, this is identical to (10). It is clear that all terms in (9) are necessary to reproduce the
correct result. In addition, we cannot change the order of integration and evaluation of the
limit in (9). In fact, since one has limx ′′↓0 ∂x ′′G0

f,τ ′(0, x
′′) = 0, this would give an incorrect

result. This suggests that (9) is not the most convenient form to use.
A slightly different series is obtained by modifying (8) as follows:

Gc
β(x
′, x) = − lim

x ′′↑↓0

∫ β

0
dτ

∂

∂x ′′
Gβ−τ (x ′, x ′′)G0

τ (0, x) (12)

where the limitx ↑↓ 0 is the average of the limitsx ↑ 0 andx ↓ 0. SinceGτ(x
′, x) vanishes

for x < 0, at least for a hard wall, we have merely added zero to the right-hand side of (8). If
we iterate (12), with (3) inserted, we get the resummed PDX series

Gβ(x
′, x) = G0

β(x
′, x)− lim

x ′′↓↑0

∫ β

0
dτ

∂

∂x ′′
G0
β−τ (x

′, x ′′)G0
τ (0, x)

+ lim
x ′′↓↑0

∫ β

0
dτ

∂

∂x ′′
lim
x ′′′↓↑0

∫ β−τ

0
dτ ′

× ∂

∂x ′′′
G0
β−τ−τ ′(x

′, x ′′′)G0
τ ′(0, x

′′)G0
τ (0, x)− · · · . (13)

Let us again consider the caseV0(x) = 0. One easily verifies that the correctionGc
β is

given by the second term of (13) alone. The convergence of the resummed PDX series is thus
found to be much better than that of of the original one. All higher-order terms in (13) vanish
separately in the present case, since one may prove

lim
x ′′↑↓0

∂

∂x ′′
lim
x ′′′↑↓0

∫ τ

0
dτ ′

∂

∂x ′′′
G0
f,τ−τ ′(x

′, x ′′′)G0
f,τ ′(0, x

′′) = 0. (14)
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Note that here we are allowed to interchange the order of integration and evaluation of the
limit. This property is an additional advantage of the series in (13). Returning to the general
case withV0(x) 6= 0, we expect that both favourable properties of the resummed PDX series
(fast convergence and invariance under interchange of the order of integration and taking the
limit) are conserved. Of course, in general the series will no longer terminate after the second
term. Nevertheless, in some applications only a few terms in the expansion are relevant, as we
shall see in the following.

The resummed PDX series (13) is of the general form

Gβ(x
′, x) =

∞∑
n=0

G
(n)
β (x

′, x) (15)

where we putG(0)
β = G0

β . The term of ordern involvesn positions at the boundary. It can be
seen as arising from paths along which the particle hits the boundaryn times. These multiple
reflections at the boundary form the basis of the multiple-reflection expansion, which was
derived by Balian and Bloch [5] quite some time before the PDX was written down. A close
inspection shows that the two expansions are completely equivalent.

Note that in principle the PDX formula (8) and the PDX series (9) can be applied to any
problem involving distinct spatial regions, for example to tunnelling problems [10]. In contrast,
the modified PDX formula (12) depends on the presence of ahard wall. The application of
the resummed PDX series (13) is likewise limited to hard-wall problems only.

3. Magnetic field

We will now apply the methods of the previous section to a confined free-electron gas in a
uniform magnetic field. The Hamiltonian is given by

H = 1
2(p−A)2 + Vw(r) (16)

whereVw is again a hard-wall potential. Because of the symmetry of the problem we will
choose the Landau gaugeA = (0, Bx,0). The factore/c, with e the charge of the particles,
has been absorbed in the constantB.

The presence of the vector potential complicates matters. The Feynman–Kac
representation (2) of the path integral is no longer valid. We have to use the Feynman–Kac–Itô
formula instead, which in the special case of∇ ·A = 0 reads [11]

Gβ(r
′, r) =

∫
dµr

′,β
r,0 (ω) exp

[
−
∫ β

0
dτ Vw(ω(τ)) + i

∫ β

0
dτ ω̇(τ ) ·A(ω(τ))

]
. (17)

If we let ωx denote thex-component of the path, we can replace the exponential factor
containingVw by θ(inf τ ωx(τ )). Since the factor that contains the vector potential is
independent ofz, the integral over thez-component of the path gives a trivial factor
(2πβ)−1/2 exp[−(z′ − z)2/2β]. The part of the Green function that depends onx and y
will be denoted byG⊥,β(r′, r) in the following.

The path integral over they-component of the path can be evaluated by a Fourier-transform
technique. In fact, discretizing thex- andy-components of the path, withn intermediate points,
we writeω(τm) = rm = (xm, ym), with r0 = r andrn+1 = r′. The integral in the exponent of
(17) is then given by

∫ β
0 dτ ω̇(τ ) ·A(ω(τ)) =∑n

m=0(rm+1−rm) ·A(rm) (in Itô’s convention).
We get

G⊥,β(r′, r) =
n+1∏
m=1

∫
drm (2πεn)

−1 exp

[
− (rm − rm−1)

2

2εn

]
θ(xm)

× exp[i(ym − ym−1)Bxm−1]δ(rn+1− r′). (18)
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The integrals overym can now be carried out by using the standard Fourier representation of
the Diracδ-function. This introduces an integral over an additional variablek. Returning to
the continuum limit for the path integral over thex-component of the path we arrive at

G⊥,β(r′, r) = (2π)−1
∫ ∞
−∞

dk eik(y ′−y)Ḡβ(x
′ − k/B, x − k/B, k) (19)

with

Ḡβ(x
′, x, k) =

∫
dµx

′,β
x,0 (ωx)θ(inf

τ
ωx(τ ) + k/B)e−

1
2B

2
∫ β

0 dτ [ωx(τ)]2
. (20)

This functionḠβ is the propagator for a particle in a one-dimensional harmonic potential with
a wall at the position−k/B.

We are now in a position to use the PDX techniques from the previous section. The
leading term in the PDX series is found by omitting the wall. In that case the propagatorḠβ

becomes [11]

Ḡ0
β(x
′, x, k) =

[
B

2π sinh(βB)

]1/2

exp

[
−B(x

′2 + x2)

2 tanh(βB)
+

Bx ′x
sinh(βB)

]
. (21)

As a matter of fact,Ḡ0
β is independent ofk, since the onlyk-dependence in (20) is in the

position of the wall. After performing the integral overk, which is Gaussian, we find that the
leading term in the PDX series is given by

G
(0)
⊥,β(r

′, r) = B

4π sinh(βB/2)
exp

[
− B

4 tanh(βB/2)
(r′ − r)2 +

iB

2
(x ′ + x)(y ′ − y)

]
(22)

which is indeed the Green function in the Landau gauge for the unconfined system.
The next term in the resummed PDX series (13) (or (15)) is more complicated. The

integral overk is again Gaussian (in fact it is Gaussian for all terms), but the additional integral
over τ is not. If we sett1 = tanh(τB/2), s1 = sinh(τB/2), t2 = tanh((β − τ)B/2) and
s2 = sinh((β − τ)B/2), we can write

G
(1)
⊥,β(r

′, r) = − B2

16π3/2

∫ β

0
dτf (1)β,τ (r

′, r) exp[g(1)β,τ (r
′, r)] (23)

with

f
(1)
β,τ (r

′, r) = 1

2
B1/2 (t1t2)

1/2

s1s2(t1 + t2)1/2

[
x ′

t1
+
x

t2
+ i(y ′ − y)

]
(24)

and

g
(1)
β,τ (r

′, r) = B

4

{
[x ′t1 + xt2 + i(y ′ − y)]2

t1 + t2
−
(
t1 +

1

t1

)
x ′2 −

(
t2 +

1

t2

)
x2

}
. (25)

Similar expressions can be found in [7]. Note that the formulae in [7] differ slightly from
those given above. We have made use of the propertyGβ(r

′, r) = [Gβ(r, r
′)]∗ and of the

possibility to changeτ into β − τ to writef (1) andg(1) in a form that is more symmetric.
The higher-order terms in the resummed PDX series can be found along similar lines. For

the special caser′ = r they have been collected in the appendix. They are found to agree with
those derived in [7], after appropriate symmetrization.
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4. Asymptotics (non-degenerate case)

The particle density and the (electric) current density can both be found from the Green function.
In the absence of quantum degeneracy the particle density is directly related toG⊥,β via

ρ(x) = ρ0

Z⊥
G⊥,β(r, r) (26)

whereρ0 is the bulk density andZ⊥ = B/[4π sinh(βB/2)] is the transverse one-particle
partition function per unit area for the bulk. The expression for the current density is slightly
more complicated, involving derivatives ofG⊥,β :

jy(x) = ρ0

Z⊥

1

2i

[
∂

∂y ′
G⊥,β(r′, r)− ∂

∂y
G⊥,β(r′, r)

]
r′=r
− Bxρ(x). (27)

Using only then = 0 term of the PDX series in the expression forρ(x) yields the bulk
densityρ0, as it should, sinceG0

⊥,β(r, r) equalsZ⊥. Therefore, we will consider the excess
particle densityδρ(x) = ρ(x) − ρ0 instead ofρ(x) in the following. Since there is no bulk
current, then = 0 term of the PDX series does not contribute to the current density.

To determine the profiles of the excess particle density and the current density for arbitrary
distances from the wall we need to evaluate all terms in the resummed PDX series. However,
theτ -integral in (23) cannot be carried out analytically. Likewise, evaluation of the multiple
τ -integrals in the higher-order terms given in the appendix is, in general, not possible.

For large distances from the wall (in units of the magnetic length 1/
√
B) the leading

contribution to the profiles comes from then = 1 term in the resummed PDX series, as we
will discuss presently. Moreover, theτ -integral in (23) can be evaluated analytically in that
limit. It is thus possible to derive asymptotic expressions for the profiles of the excess particle
density and the current density that are valid for large

√
Bx.

A change of variablesy = z2/(z0
2 − z2), with z = tanh[B(2τ − β)/4] and z0 =

tanh(Bβ/4), brings (23) into the form

G
(1)
⊥,β(r, r) = −

B3/2x

8
√

2π3/2

1− z0
2

z
3/2
0

exp

[
−Bx

2

2z0

] ∫ ∞
0

dy√
y(1 +y)

√
1 + (1− z0

2)y

× exp

[
− (1− z0

2)y

2z0
Bx2

]
. (28)

Because of the presence ofBx2 in the exponent, only small values of(1− z0
2)y/z0 contribute

to the integral for large
√
Bx. Since one has 06 z0 < 1, this implies small values of(1−z0

2)y.
Note that this does not necessarily mean thaty itself is small, asz0 may be close to 1. For
large

√
Bx the factor

√
1 + (1− z0

2)y in the integrand can be replaced by 1. Subsequently,
we can use ∫ ∞

0

dy√
y(1 +y)

e−ay = ea/2K0(a/2) (29)

whereK0 is the modified Bessel function of the second kind. In this way we arrive at the
following asymptotic expression for the transverse part of the Green function for large

√
Bx:

G
(1)
⊥,β(r, r) ≈ −

B3/2x

8
√

2π3/2

1− z0
2

z0
3/2

exp

[
−1 + z0

2

4z0
Bx2

]
K0

(
1− z0

2

4z0
Bx2

)
. (30)

The next term in the asymptotic expansion ofG
(1)
⊥,β is

− B3/2x

8
√

2π3/2

(1− z0
2)2

4z0
3/2

exp

(
−1 + z0

2

4z0
Bx2

){
K1

(
1− z0

2

4z0
Bx2

)
−K0

(
1− z0

2

4z0
Bx2

)}
(31)
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Figure 1. Numerical results forG(2)⊥,β/G
(1)
⊥,β as a function ofξ = √Bx, for βB = 4.

which can be derived by substituting
√

1 + (1− z0
2)y ≈ 1 + (1− z0

2)y/2. Sincez[K1(z) −
K0(z)]/K0(z) is bounded for all positivez, we see that (31) is indeed of higher order in
1/(
√
Bx).

Having investigated then = 1 term in the resummed PDX series, we may turn to the higher
orders. From a detailed analysis (see the appendix) it is found that all terms withn > 1 are
of higher order in 1/(

√
Bx) in comparison with (30). In figure 1 we have plottedG(2)

⊥,β/G
(1)
⊥,β

as a function ofξ = √Bx, for a representative value ofβB. The decay is in good agreement
with (A.10).

The asymptotic expression for the excess particle density at large
√
Bx follows by

substituting (30) in (26):

δρ(x) ≈ −ρ0
B1/2x√

2π
z0
−1/2 exp

(
−1 + z0

2

4z0
Bx2

)
K0

(
1− z0

2

4z0
Bx2

)
(32)

where we have used thatZ⊥ is given byZ⊥ = B(1− z0
2)/(8πz0) in terms ofz0. In a similar

way an asymptotic expression for the current density at large
√
Bx can be derived. In leading

order it is found to be proportional to the asymptotic excess particle density

jy(x) ≈ − 1
2Bxδρ(x) (33)

with δρ(x) given in (32). This simple proportionality ceases to be valid, if higher-order terms
are incorporated in the asymptotic expansion. Comparing (33) to (27) we see that there is a
compensation between the term proportional toρ(x) and the term that contains the derivatives
of the Green function. For then = 0 contribution this compensation is complete, but forn = 1
only half of the second term in (27) is cancelled, at least in leading order in 1/(

√
Bx).

It must be stressed that both (32) and (33) are valid for large
√
Bx, whereasβB may take

arbitrary values. If, apart fromBx2, [(1− z0
2)/z0]Bx2 is also large, we can simplify (30) to

G
(1)
⊥,β(r, r) ≈ −

B

8π

√
1− z0

2

z0
exp

(
−Bx

2

2z0

)
(34)
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by using the asymptotic expansion for the modified Bessel function. In that case the excess
particle density profile is asymptotically given by

δρ(x) ≈ −ρ0 cosh(βB/4) exp

[
− Bx2

2 tanh(βB/4)

]
. (35)

Large [(1−z0
2)/z0]Bx2 implies that the regimez0→ 1 orβB →∞ is not included, whereas

no such limitation is imposed on the use of (32). For fixedB this is not a serious limitation
in the present context of a non-degenerate electron gas, since forβ → ∞ we have to use
Fermi–Dirac statistics anyway. In the next section it will be shown that the Green function
in the form (30) is crucial to obtain information on the asymptotic profiles for a degenerate
electron gas with Fermi–Dirac statistics.

To investigate the validity of the asymptotic expressions forG(1) mentioned above we
have compared (30) and (34) with numerical results based on (23) or (28). The results are
drawn in figure 2. It is clear that forβB = 4 both asymptotic expressions are adequate, even
for relatively small values ofξ , whereas forβB = 16 the performance of (30) is much better
than that of (34).

Finally, for smallB, expression (35) for the excess particle density yields

ρ(x) ≈ −ρ0(1 + 1
32β

2B2 − 1
24βB

2x2)e−2x2/β . (36)

Indeed, these terms correspond to the leading terms (for largex2/β) in the expression for the
density up to orderB2, as given in [7].

In closing this section on the non-degenerate electron gas we remark that the path-integral
representation can be used to derive a strict bound on the particle density for all values ofx.
Upon settingk′ = x − k/B we find from (19), (20) and (26)

δρ(x) = − ρ0B

2πZ⊥

∫ ∞
−∞

dk′
∫

dµk
′,β
k′,0 (ωx)θ(k

′ − x − inf
τ
ωx(τ ))e

− 1
2B

2
∫ β

0 dτ [ωx(τ)]2
. (37)

All paths that contribute to this integral must pass below the pointk′ − x, while starting and
finishing atk′. Now look at paths that go via a point belowk′ − x precisely atτ = β/2. Since
these form a subclass of all allowed paths, the corresponding path integral provides a lower
bound on|δρ(x)|:

|δρ(x)| > ρ0B

2πZ⊥

∫ ∞
−∞

dk′
∫ k′−x

−∞
dx ′

∫
dµx

′,β/2
k′,0 (ωx)e

− 1
2B

2
∫ β/2

0 dτ [ωx(τ)]2

×
∫

dµk
′,β
x ′,β/2(ωx)e

− 1
2B

2
∫ β
β/2 dτ [ωx(τ)]2

. (38)

The path integrals in this expression are now unrestricted, so that they are given byḠ0
β (see

(21)). Integration overk′ andx ′ − k′ (in that order) gives

|δρ(x)| > 1

2
ρ0 Erfc

(
x

[
B

2 tanhβB/4

]1/2
)

(39)

which is the bound for allx that we set out to derive. In the limit of largex this implies

lim
x→∞ x exp

[
Bx2

2 tanh(βB/4)

]
|δρ(x)| > ρ0

2
√
π

[
2 tanh(βB/4)

B

]1/2

. (40)

This inequality is consistent with (35), as it should be. In particular, the Gaussian decay of
δρ(x), with the same characteristic length as in (35), is corroborated.

As can be seen from the results (32) and (33) the decay towards the bulk value of both the
excess particle density and the current density is Gaussian, modulated by a Bessel function
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Figure 2. Comparison between results from numerical integration of (23) or (28) (——) and the
asymptotic expressions (30) (· · · · · ·) and (34) (—·—) for −G(1)⊥,β/B as a function ofξ .

and an algebraic factor. For not too largeβB the decay of the excess particle density, as given
by (35), is strictly Gaussian far from the edge. The asymptotic decay of the current density
is likewise Gaussian, albeit with an extra algebraic factor. The characteristic length on which
the Gaussian decay manifests itself is proportional to [tanh(βB/4)/B]1/2. As we have shown
above, the Gaussian decay for the excess particle density is consistent with a lower bound that
can be derived exactly. For the current density it is consistent with the upper bound on the
absolute value of the current density that has been derived by Macriset al [12]. However, it
should be remarked that the upper bound obtained in that paper is rather wide. In fact, the
characteristic length of the Gaussian function in their upper bound is the thermal wavelength,
which is independent of the magnetic field. This characteristic length is larger than that in the
Gaussian found here, at least for non-vanishing magnetic fields.
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5. Asymptotics (degenerate case)

The particle densityρ(x)FD of a degenerate Fermi–Dirac system at temperatureT = 0 and
chemical potentialµ is related to the density of the non-degenerate system by a Laplace
transformation:∫ ∞

0
dµ e−βµρ(x)FD =

2Z

ρ0β
ρ(x). (41)

Here,Z = Z‖Z⊥ is the total one-particle partition function per unit volume for the bulk, with
Z‖ = (2πβ)−1/2; the factor 2 takes the spin degeneracy into account. The relation (41) implies
that we can calculate the excess particle densityδρ(x)FD from δρ(x) via an inverse Laplace
transform [13]:

δρ(x)FD =
1

2π i

∫ c+i∞

c−i∞
dβ eβµ

2Z

ρ0β
δρ(x) (42)

with arbitraryc > 0. Hence, the asymptotic behaviour of the excess particle density of the
degenerate system for large

√
Bx can be obtained on the basis of the results of the previous

section.
Let ξ = √Bx and ν = µ/B, and introduce a new integration variablet by writing

β = ξ(it + 1)/B, so thatc is given byξ/B. If we express the right-hand side of (32) in the
variablesξ andν, and substitute it into (42), we get

δρ(x)FD ≈ −
B3/2ξ1/2

16π3

∫ ∞
−∞

dt
eνξ(it+1)

(it + 1)3/2
1− z0

2

z0
3/2

exp

(
−1 + z0

2

4z0
ξ2

)
K0

(
1− z0

2

4z0
ξ2

)
. (43)

In the new variables we havez0 = tanh[ξ(it + 1)/4], so that largeξ implies z0 ≈ 1 and
1− z0

2 ≈ 4 exp[−ξ(it + 1)/2]. Consequently, the argument ofK0 in (43) is small in absolute
value, so that we can use the series representation

K0(z) =
∞∑
n=0

[ n∑
m=1

1

m
− γ − log

(
z

2

)]
1

22n(n!)2
z2n (44)

for the modified Bessel function. In this way we get

δρ(x)FD ≈ −
B3/2ξ1/2

4π3
e−ξ

2/2
∞∑
n=0

ξ4n

22n(n!)2

∫ ∞
−∞

dt

×
[
(it + 1)

ξ

2
+

n∑
m=1

1

m
− γ − log

(
ξ2

2

)]
e[ν−(n+1/2)]ξ(it+1)

(it + 1)3/2
. (45)

Upon using the identity†∫ ∞
−∞

dt
e(it+1)x

(it + 1)ν
= θ(x)2πx

ν−1

0(ν)
(ν > 0) (46)

we arrive at the asymptotic expression for the excess particle density

δρ(x)FD ≈ −
B3/2ξ

π5/2
e−ξ

2/2
[ν−1/2]∑
n=0

ξ4n

22n(n!)2

[
ν −

(
n +

1

2

)]1/2

×
[

1

4[ν − (n + 1
2)]

+
n∑

m=1

1

m
− γ − log

(
ξ2

2

)]
(47)

with [x] the largest integer less than or equal tox. The asymptotic expression derived here is
valid for largeξ and fixedν.

† See formula 3.2.4 [14] in which the overall sign should be inverted.
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The profile of the current density for largeξ and fixedν can likewise be obtained from the
results of the previous section. In fact, because of the linearity of the inverse Laplace transform
the asymptotic form of the current density is related to that of the excess particle density in the
same way as in (33)

jy(x)FD ≈ − 1
2Bxδρ(x)FD. (48)

The expressions (47) and (48) for the asymptotic profiles of the excess particle density
and the current density are identical to the leading terms of the asymptotic expansions in [4],
which have been obtained by solving the eigenvalue problem and analysing the asymptotics
of the eigenfunctions. It is also possible to recover the higher-order terms of [4] by inserting
higher-order terms in the approximate expressions for the factorsz0 and 1−z2

0 in the integrand
in (43), taking into account corrections such as (31), and including more terms in the resummed
PDX series as well.

The asymptotic behaviour of (47) (and of (48)) is Gaussian inξ , so that the characteristic
length is the magnetic length 1/

√
B for a completely degenerate electron gas. Furthermore,

the Gaussian is multiplied by a prefactor that depends algebraically and logarithmically onξ .
For ν just above a half-odd integer, that is, for chemical potentialsµ slightly above a Landau
level, the profile of the excess particle density shows a singular behaviour that is a remnant of
the de Haas–van Alphen effect. A numerical assessment of the convergence of this asymptotic
expression can be found in [4].

The dominant term in the asymptotic behaviour comes from the highest Landau level with
the label [ν− 1

2]. Since the prefactor of the Gaussian in this term is proportional toξ4[ν−1/2]+1,
the onset of the Gaussian decay shifts to larger and larger values ofξ , if ν increases. In fact,
(47) is only useful forξ2� ν, or equivalently forx large compared with the cyclotron radius√
µ/B of particles at the Fermi level. Ifν is large, a different behaviour can be expected in

the regimeξ2 ≈ ν, before the ultimate Gaussian decay sets in atξ2� ν.
In conclusion, we have studied the edge effects in the excess particle density and the current

density of a magnetized free-electron gas, which is confined by a hard wall. In particular, we
have investigated the long-range influence of the wall on these quantities, by determining their
asymptotic profiles both for the non-degenerate case and for strong degeneracy. New results
have been obtained for both these cases. In the former case the asymptotic spatial profiles
were found to be Gaussian (or Gaussian modulated by a Bessel function), with a characteristic
length that is proportional to [tanh(βB/4)/B]1/2. In the latter case the asymptotic behaviour
depends on the number of filled Landau levelsn = [µ/B − 1

2]. In fact, it is determined by
a Gaussian with a characteristic length equal to the magnetic length 1/

√
B, multiplied by a

polynomial and a logarithmic prefactor. Since the degree of the polynomial prefactor grows
with n, the Gaussian character of the asymptotics comes to the fore only for distances that are
large compared with

√
n times the magnetic length.
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Appendix. Higher-order terms in the PDX series

In this appendix we study the asymptotic behaviour of the terms withn > 1 in the resummed
PDX series for the Green function, for large values of

√
Bx. The general form of the term of
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ordern in the resummed PDX series is

G
(n)
⊥,β(r

′, r) = (−)n Bn+1

2n+3π(n+2)/2

∫ β

0
dτ1 . . .

∫ β

0
dτn θ(τn+1)

×f (n)β,τ1,...,τn
(r′, r) exp[g(n)β,τ1,...,τn

(r′, r)] (A.1)

with τn+1 = β−
∑n

i=1 τi . The functionsf (n) andg(n) can be found in [7]. Here we collect them
for the caser′ = r, which is relevant for the particle density. In that case we can symmetrize
the expressions int1 andt2. As a result they take the form

f
(n)
β,τ1,...,τn

(r, r) =
( n+1∏
i=1

ti
3/2

si

)( n+1∑
i=1

ti

)−(n+1)/2
t1 + t2
2t1t2

{
2

(
1

2

)
n/2

δn,even

+
[(n−1)/2]∑
p=0

( 1
2)p

2n−2p−1

( n+1∑
i=1

ti

)p−n/2
(Bx2)n/2−p(t1 + t2)

n−2p−1

×
[
(t1 + t2)

(
n− 1

2p − 1

)
−
( n+1∑
i=3

ti

)(
n− 1

2p

)

+
t1 + t2
t1t2

(
n− 1

2p

)
+

1

t1t2

( n+1∑
i=3

ti

)(
n− 1

2p

)]}
(A.2)

and

g
(n)
β,τ1,...,τn

(r, r) = −Bx
2

4
(t1 + t2)

[
1 +

1

t1t2
− t1 + t2∑n+1

i=1 ti

]
(A.3)

with ti = tanh(Bτi/2), si = sinh(Bτi/2) and(a)n Pochhammer’s symbola(a +1) . . . (a +n−
1).

For large
√
Bx the dominant contribution to the integral comes from the integration region

for which the factor multiplyingBx2 in |g(n)| is minimal. This is the case forτ1 = τ2 = β/2 and
τi = 0 (with 36 i 6 n + 1). Therefore, we introduce on a par withz0 = tanh(Bβ/4) the new
integration variablesz+ = tanh[B(β−τ1−τ2)/4], z− = tanh[B(τ1−τ2)/4] and forn > 2 also
zi = tanh(Bτi/2) = ti (i = 3, . . . , n). If the integrations are carried out in the orderzi, z+ and
z−, the allowed intervals of these variables arez− ∈ [−z0, z0], z+ ∈ [0, (z0−|z−|)/(1−z0|z−|)],
andzi ∈ [0, 2z+/(1 + z2

+)], with an additional condition onzi resulting from theθ -function in
(A.1).

We now have to rewrite the integrand of (A.1) in terms ofz+, z− andzi . Let us consider
small values ofz+ andzi . The functiong(n) then takes the form

g
(n)
β,τ1,...,τn

(r, r) ≈ −Bx
2

2

[
z0(1− z−2)

z0
2 − z−2

+
z0

4z−2 + z0
2z−4 − 4z0

2z−2 + z0
2 + z−2

(z0
2 − z−2)2

z+ + · · ·
]
.

(A.4)

From the right-hand side it is seen that it is indeed true that only small values ofz+ contribute
to the integral in (A.1), asBx2 is large. In turn this implies that allzi have to be small as well,
whereas no condition of smallness is imposed onz−. In f (n) only thep = 0 terms are relevant
for largeBx2, since these give the terms with the highest power ofx. As a consequence we
can writef (n) as

f
(n)
β,τ1,...,τn

(r, r) ≈ (Bx2)n/2
z0

1/2(1− z0
2)

2n−1/2

(
1− z−2

z0
2 − z−2

)3/2(
2z+ −

n∑
i=3

zi

)1/2( n∏
i=3

z
1/2
i

)
(A.5)
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again for small values ofz+ andzi . Finally, theθ -function in (A.1) is equal toθ(2z+−
∑n

i=3 zi)

in the neighbourhood ofz+ = zi = 0.
Since in the approximation considered hereg(n) does not depend onzi anymore, the

integral over these variables can be evaluated easily:( n∏
i=3

∫ 2z+/(1+z+
2)

0
dzi

)
θ

(
2z+ −

n∑
i=3

zi

)(
2z+ −

n∑
i=3

zi

)1/2( n∏
i=3

zi
1/2

)
= π(n−1)/2

2n−10[3(n− 1)/2]
(2z+)

(3n−5)/2. (A.6)

To calculate the integral we have extended the upper limit to∞, since the conditionz+ � 1
guarantees that only small values ofzi contribute anyway. The subsequent integral overz+

takes the following form:∫ z0−|z−|
1−z0|z−|

0
dz+(2z+)

(3n−5)/2 exp

[
−Bx

2

2

z0
4z−2 + z0

2z−4 − 4z0
2z−2 + z0

2 + z−2

(z0
2 − z−2)2

z+

]
. (A.7)

Again we can choose∞ for the upper limit, since only small values ofz+ are significant; the
integral can then be carried out trivially.

We are left with the integral overz−. Leaving it in its original form we arrive at

G
(n)
⊥,β(r, r) ≈ (−)n

2n−7/2z
1/2
0

π3/2(Bx2)n−5/2x2
(1− z0

2)

×
∫ z0

0
dz−

(z0
2 − z−2)3(n−3/2)(1− z−2)1/2

(z0
4z−2 + z0

2z−4 − 4z0
2z−2 + z0

2 + z−2)3(n−1)/2

× exp

[
−Bx

2

2

z0(1− z−2)

z0
2 − z−2

]
. (A.8)

A final transformation of variables, by settingz− = z0
√
y/
√

1 +y, leads to the following
asymptotic expression forG(n)

⊥,β in the regime of large
√
Bx:

G
(n)
⊥,β(r, r) ≈ (−)n

2n−9/2z0
3n−9/2(1− z0

2)

π3/2(Bx2)n−5/2x2
exp

[
−Bx

2

2z0

] ∫ ∞
0

dy√
y(1 +y)

×
√

1 + (1− z0
2)y

[2y2(1− z2
0)

2 + y(1− z2
0)(3− z2

0) + 1]3(n−1)/2

× exp

[
− (1− z0

2)y

2z0
Bx2

]
. (A.9)

The expression found here looks very similar to (28), which is valid forG
(1)
⊥,β . As before,

we may use the fact that only small values of(1− z2
0)y contribute to the integral for large√

Bx. As a result, one has the asymptotic relation

G
(n)
⊥,β(r, r) ≈

(
−2z0

3

Bx2

)n−1

G
(1)
⊥,β(r, r) (A.10)

for largeBx2. A similar connection formula holds for the asymptotic forms of the excess
particles density in various orders:

δρ(n)(x) ≈
(
−2z0

3

Bx2

)n−1

δρ(1)(x) (A.11)
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again for largeBx2. Likewise, one derives for the asymptotic forms of the current density in
various orders:

j (n)y (x) ≈
(
−2z0

3

Bx2

)n−1

j (1)y (x). (A.12)

We may draw the conclusion that for large
√
Bx then = 1 term in the resummed PDX series

yields the dominant contribution, both for the excess particle density and for the current density.

References

[1] Landau L 1930Z. Phys.64629
[2] MacDonald A H and St̆reda P 1984Phys. Rev.B 291616
[3] Kunz H 1994J. Stat. Phys.76183
[4] Kettenis M M and Suttorp L G 1998J. Phys. A: Math. Gen.316547
[5] Balian R and Bloch C 1970Ann. Phys., NY60401
[6] Robnik M 1986J. Phys. A: Math. Gen.193619
[7] John P and Suttorp L G 1995J. Phys. A: Math. Gen.286087
[8] Ohtaka K and Moriya T 1973J. Phys. Soc. Japan341203
[9] Jancovici B 1980PhysicaA 101324

[10] Auerbach A and Kivelson S 1985Nucl. Phys.B 257799
[11] Roepstorff R 1994Path Integral Approach to Quantum Physics(Berlin: Springer)
[12] Macris N, Martin Ph A and Pulé J V 1988Commun. Math. Phys.117215
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